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Abstract. Urban green space (UGS) is an important component in the urban ecosystem and has great significance to the urban

ecological environment. Although the development of remote sensing platforms and deep learning technologies have provided

opportunities for UGS mapping from high-resolution images (HRIs), challenges still exist in its large-scale and fine-grained

application, due to insufficient annotated datasets and specially designed methods for UGS. Moreover, the domain shift between

images from different regions is also a problem that must be solved. To address these issues, a general deep learning (DL)5

framework is proposed for UGS mapping in the large scale, and the fine-grained UGS maps of 34 major cities/areas in China

are generated (UGS-1m). The DL framework consists of a generator and a discriminator. The generator is a fully convolutional

network designed for UGS extraction (UGSNet), which integrates attention mechanisms to improve the discrimination to UGS,

and employs a point rending strategy for edge recovery. The discriminator is a fully connected network aiming to deal with

the domain shift between images. To support the model training, an urban green space dataset (UGSet) with a total number of10

4,454 samples of size 512×512 is provided. The main steps to obtain UGS-1m can be summarized as follows: a) Firstly, the

UGSNet will be pre-trained on the UGSet in order to get a good starting training point for the generator; b) After pre-training

on the UGSet, the discriminator is responsible to adapt the pre-trained UGSNet to different cities/areas through adversarial

training; c) Finally, the UGS results of the 34 major cities/areas in China (UGS-1m) are obtained using 2,343 Google Earth

images with a data frame of 7’30" in longitude and 5’00" in latitude, and a spatial resolution of nearly 1.1 meters. Evaluating15

the performance of the proposed approach on samples from Guangzhou city shows the validity of the UGS-1m products, with

an overall accuracy of 87.4% and an F1 score of 81.14%. Furthermore, experiments on UGSet with the existing state-of-the-art

(SOTA) DL models proves the effectiveness of UGSNet, with the highest F1 of 77.30%. Finally, the comparisons with existing

products further shows the feasibility of the UGS-1m and the effectiveness and great potential of the proposed DL framework.

The UGS-1m can be downloaded from https://doi.org/10.5281/zenodo.6155516 (Shi et al., 2022).20

1 Introduction

Urban green space (UGS), one of the most important components of the urban ecosystem, refers to the vegetation entity in

the urban area (Kuang and Dou, 2020), such as parks and green buffers. It plays a very important role in the urban ecological
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environment (Kong et al., 2014; Zhang et al., 2015), public health (Fuller et al., 2007) and social economy (De Ridder et al.,

2004). However, in the context of rapid urbanization, UGS is now facing drastic changes in terms of sustainability, integrity25

and diversity. Indeed, some UGS changes might have a negative impact on the fragile urban ecosystem and cause a series

of problems on the urban environment and welfare. In technical literature, several works have enthusiastically discussed the

interaction mechanism between UGS and urban environment, in which relevant UGS data is indispensable (see for instance

Zhou and Wang, 2011; Huang et al., 2018; Zhao et al., 2010). Thus, to provide the reliable basic geographic data for in-depth

UGS research, fast and accurate mapping of UGS is crucial and necessary.30

With the development and application of remote sensing technology, diversified remote sensing data are increasingly used

to obtain UGS coverage. In this respect, multispectral remote sensing images are widely used. Sun et al. (2011) extracted UGS

in China’s 117 metropolises from MODIS data over the last three decades through Normalized Difference Vegetation Index

(NDVI), to study its impacts on urbanization. Huang et al. (2017) obtained urban green coverage of 28 megacities from Landsat

images between 2005 and 2015 to assess the change of health benefits by urban green spaces. Recently, taking advantage of35

cloud computing, many excellent land cover products based on Landsat and Sentinel-1&2 images have been proposed, includ-

ing GlobeLand30 (Jun et al., 2014), GLC_FCS30 (Zhang et al., 2021) , FROM_GLC10 (Gong et al., 2013), Esri 2020 LC

(Helber et al., 2019). These products have provided valuable world-wide maps of land coverage, so that researchers can easily

extract relevant information and conduct in-depth research on specific UGS properties, such as impervious surface, UGS cov-

erage, etc. Although multispectral images have provided powerful data support for large-scale and long-term UGS monitoring,40

it is often difficult to obtain UGS information of small scale due to the limitation of spatial resolution of multispectral images.

In other words, some small-scale UGSs (such as UGS attached to buildings and roads) are difficult to be identified in multi-

spectral images, although they are of great significance to urban ecosystem. Therefore, images with higher spatial resolution

are required to address the large difference in intra-class scale of urban green space.

To get finer-grained extraction of UGS, remote sensing imagery with richer spatial information are more and more employed45

in UGS extraction, such as Rapid-Eye, ALOS and SPOT images (Mathieu et al., 2007; Zhang et al., 2015; Zhou et al., 2018).

In these studies, machine learning methods, including SVM (Yang et al., 2014) and random forest (Huang et al., 2017), are

often employed to obtain UGS coverage. However, hand-craft features are required for classification in these methods, which

are time- and labor-consuming, and not objective enough.

Deep learning (DL) based methods can hence be used to address these issues (Deng and Yu, 2014). In fact, DL schemes50

can extract multi-level features automatically, so that they are becoming the mainstream solution in many fields, including

computer vision, natural language processing, medical image recognition, etc (Zhang et al., 2018; Devlin et al., 2018; Litjens

et al., 2017). Among DL algorithms, the full convolution networks (FCNs), represented by UNet (Ronneberger et al., 2015),

SegNet (Badrinarayanan et al., 2017) and Deeplab v3+ (Chen et al., 2018a), have been widely introduced into remote sensing

interpretation tasks, such as building footprint extraction (Liu et al., 2019a), change detection (Liu et al., 2021), as well as55

UGS mapping (Liu et al., 2019b). For instance, Xu et al. (2020) improved the U-Net model by adding batch normalization

(BN) and dropout layer to solve the over-fitting problem, and monitored UGS areas in Beijing. Liu et al. (2019b) employed

DeepLab v3+ to automatically obtain green space distribution from GF-2 imagery. With the help of convolutional operators
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with different receptive fields for multi-scale feature extraction and fully convolutional layers to recover spatial information,

the FCN methods can achieve accurate pixel-level results in an end-to-end manner (Daudt et al., 2018).60

In the context of rapid changes in the global ecological environment, large-scale and high-resolution automatic extraction

of UGS is becoming more and more important (Cao and Huang, 2021; Wu et al., 2021). Although the existing methods have

achieved good results in UGS extraction based on deep learning, there are still open problems to be solved. Firstly, significant

intra-class differences and inter-class similarities of UGS have jeopardized the classic strategies for recognition of UGS. The

appearance and scale of UGS vary significantly due to the wide variety involved. For example, while the green buffers inside65

roads are measured in meters, a public park could be measured in kilometers. Moreover, the substantial similarity between

farmland and UGS also leads to severe misclassification, while farmland does not belong to UGS. Therefore, guaranteeing that

the model can extract effective relevant features is crucial to accurately obtain UGS coverage.

Secondly, the development of UGS extraction methods based on deep learning framework is greatly limited by the lack

of datasets, while accurate and reliable results by deep learning models heavily rely on sufficient training samples. The last70

few decades have witnessed the flourishing of many large datasets to be used for deep learning architectures, such as Ima-

geNet (Krizhevsky et al., 2012), PASCAL VOC (Everingham et al., 2015), SYSU-CD (Shi et al., 2021). Nevertheless, due to

tremendous time and labor required, there are few publicly available datasets with fine-grained UGS information. This condi-

tion reduces the efficiency of researchers, and hinders the fair comparison between UGS extraction methods, not to mention

providing reliable basic data for large-scale UGS mapping.75

Last but not least, the large-scale fine-grained UGS mapping is also limited by the difference of data distribution. Affected

by external factors (e.g., illumination, angle and distortion), remote sensing images collected in different regions and time are

difficult to keep consistent data distribution. Therefore, the model trained on a certain dataset fail to be well applied to images

of another region. In order to overcome the data shift between difference data, domain adaptation should be adopted to improve

the generalization of the model.80

In view of the aforementioned problems, we develop a deep learning framework for large-scale and high-precision UGS

extraction, leading to a collection of 1-meter UGS products of 34 major cities/areas in China (UGS-1m). As shown in Figure

1, we firstly construct a high-resolution urban green space dataset (UGSet), which contains 4,454 samples of size 512×512,

to support training and verification of UGS extraction model. Then we build a deep learning model for UGS mapping, which

consists of a generator and a discriminator. The generator is a fully convolutional network for UGS extraction, also referred as85

UGSNet, which integrates an enhanced Coordinate attention (ECA) module to capture more effective feature representations,

and a point head module to get fine-grained UGS results. The discriminator is a fully connected network that aims to adapt

the UGSet-pretrained UGSNet to large-scale UGS mapping through adversarial training (Tsai et al., 2018). Finally, the UGS

results of the 34 major cities/areas in China, namely UGS-1m, are obtained after post-processing, including mosaic and mask.

The contributions of this paper can be summarized as follows:90

(1) a general deep learning framework for large-scale and high-resolution UGS mapping, and generating UGS maps of 34

major cities/areas in China with a spatial resolution of 1 meter (UGS-1m), is proposed;
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Figure 1. Diagram of the deep learning framework to generate UGS-1m.

(2) a fully convolutional network for fine-grained UGS mapping (UGSNet) is introduced. This architecture integrates an

enhanced Coordinate attention (ECA) module and a point head module to address the intra-class differences and inter-

class similarities in UGS;95

(3) a large benchmark dataset, Urban Green Space dataset (UGSet), is provided to support and foster the UGS research

based on the deep learning framework;

The reminder of this paper is arranged as follows. Sect. 2 introduces the study area and data. Sect. 3 illustrates the deep

learning framework for UGS mapping. Sect. 4 assesses and demonstrates the UGS results. Then discussions will be conducted

in Sect. 5. Finally, conclusions will be made in Sect. 6.100
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Figure 2. The 34 major cities/areas in China.

2 Study area and data

2.1 Study area

As Figure 2 shows, the study area is 34 major cities/areas in China, including two special administrative regions (Hong Kong

and Macau), four municipalities (Beijing, Shanghai, Tianjin, and Chongqing), capitals of five autonomous regions (Huhuhot,

Nanning, Lasa, Yinchuan and Urumqi), as well as captials of 23 provinces (Harbin, Changchun, Shenyang, Shijiazhuang,105

Lanzhou, Xining, Xi’an, Zhengzhou, Jinan, Changsha, Wuhan, Nanjing, Chengdu, Guiyang, Kunming, Hangzhou, Nanchang,

Guangzhou, Fuzhou, Taipei, Haikou).

According to the newly promulgated "Guidance of the General Office of the State Council on Scientific Greening", it is

required to scientifically promote urban gardening and greening construction; improve the urban green space system and

reasonable layout of greening land to meet the requirements of urban health, safety and livability; promote urban ecolog-110

ical restoration, central city, old city greenway construction, to facilitate green travel for urban residents; build a balanced

distribution of the park system. Thus, strengthening the management of urban landscaping and the design and construction

5
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Table 1. UGS types and descriptions.

Type Description

Park Green space open to the public for all kinds of outdoor activities

Green buffer Green space to isolate facilities like sewage treatment plants, garbage

treatment plants, high-voltage lines, etc, or water bodies such as rivers,

lakes and seas

Square green space Green space in open scape area with leisure and entertainment func-

tions, mainly is shrubs and grassland

Attached green space Green space attached to residential, transportation, industrial, or com-

mercial land

Other green space Green space on undefined land

management of major greening projects, scientific proof and implementation, is necessary to ensure the quality of the project,

and to build a livable environment in which people and nature live in harmony.

2.2 Datasets115

2.2.1 UGSet

Urban green space can be divided into five categories, including park, green buffer, square green space, attached green space

and other green space (Chen et al., 2018b), as described in Table 1. Different types of UGS vary not only on their functions,

but also on shape and scale: these properties become more apparent in high-resolution images. For instance, park and green

buffer are often occurring in a relatively large volume, while attached green space and square green space are mainly scattered120

in urban areas in smaller form. In other words, urban green space is not only diverse, but also has large inter- and intra-class

scale differences. Therefore, a dataset that contains UGS samples of different types and scales is an important guarantee for

the model to learn and identify UGS accurately.

In order to provide an extensive sample database for wide-range UGS mapping, as well as a benchmark for comparisons

among deep learning algorithms, we constructed a largescale high-resolution urban green space dataset (UGSet), which con-125

tains 4,544 images of size 512×512 with a spatial resolution of nearly 1 meter. These images acquired by Gaofen-2 are collected

from 142 images in Guangdong Province, China, as shown in Figure 3. With the aim to filter out green space in non-urban

areas, the global urban boundaries (GUB) data (Li et al., 2020) of 2018 is used to mask the urban areas of each original im-

age. All types of UGS in the images are carefully annotated through expert visual interpretation, before they are cropped into

512×512 patches. As can be seen from Figure 4, the category of non-UGS and UGS in the ground truth are represented by 0130

and 255, respectively. According to the ratio of 5:2:3, the UGSet is randomly divided into the training set, verification set and

test set.

6
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Figure 3. The 142 Sample areas in UGSet collected from Guangdong Province. Each with a data frame of 3’45 "in longitude and 2’30" in

latitude.

2.2.2 Global urban boundaries (GUB)

The global urban boundaries (GUB) data (Li et al., 2020) that delineate the boundary of global urban area in seven years (i.e.

1990, 1995, 2000, 2005, 2010, 2015, and 2018) is obtained by processing the 30 m global artificial impervious area (GAIA)135

data (Gong et al., 2020). It is worth noting that GAIA is the only annual map of impervious surface areas from 1985 to 2018

with a resolution of 30 m. In this study, the GUB data in 2018 are adopted to mask the urban area. Specifically, in order to

obtain accurate UGS samples, the GUB data are used to filter out non-relevant green space samples from non-urban areas. The

GUB data are also applied to the UGS results from the model for post processing, so to get final UGS map of each city/area.

2.2.3 Google Earth Imagery140

Google Earth is a free software which enables users to view high-resolution satellite images around the world. Therefore,

in order to obtain fine-grained UGS maps in the study area, a total number of 2,343 Google Earth images covering 34 major

cities/areas in China are downloaded, each with a data frame of 7’30" in longitude and 5’00" in latitude, and a spatial resolution

7
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(a) (b) (c) (d) (e)

Figure 4. Example of different types of UGS samples in UGSet (Images were retrieved from GF-2 2019). (a) Park; (b) Green buffer; (c)

Square green space; (d) Attached green space; (e) Other green space.

of nearly 1.1 meters. All images selected are clear and cloud-free to avoid missed detection. Limited by the GPU memory, these

images are all cropped into the size of 512×512 for prediction.145

3 Methods

In order to realize large-scale fine-grained UGS mapping, a general model framework is essential, in addition to a sufficiently

large dataset. Therefore, we propose a deep learning framework for UGS mapping: its functional flowchart is shown in Figure

5. Inspired by adversarial domain adaptation frameworks (Tsai et al., 2018), the proposed framework includes a generator and

a discriminator. In particular, a fully convolutional neural network, namely UGSNet, is designed as the generator: this structure150

is utilized to learn and extract fine-grained UGS information. On the other hand, a simple fully connected network is employed

as the discriminator to help model domain adaptation and achieve large-scale UGS mapping.

The following Sect. 3.1 and Sect. 3.2 will introduce the structure of UGSNet and discriminator, respectively. The optimiza-

tion process of the deep learning framework will be described in Sect. 3.3, which can be divided into two parts: pre-training

and adversarial training. Parameter settings and accuracy evaluation will be covered in Sect. 3.4 and Sect. 3.5.155
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Figure 5. Flowchart of the proposed deep learning framework for UGS mapping (The "Image in UGSet" were retrieved from GF-2 2019,

whiel the "Image of target city" © Google Earth 2020).

3.1 UGSNet

As shown in Figure 6, UGSNet contains two parts: a backbone to extract multi-scale features and generate coarse results, and

a point head module to obtain fine-grained results.

3.1.1 Backbone

The backbone of the UGSNet first adopts the efficient ResNet-50 as feature extractor to capture multi-scale features from the160

images. This segment contains five stages: the first stage consists of a 7×7 convolutional layer, a batch normalization layer

(Ioffe and Szegedy, 2015), a Rectified Linear Unit (ReLU) function (Glorot et al., 2011) and a max-pooling layer with a

stride of 2; then, four residual blocks are utilized to capture deep features of four different levels. The four residual blocks are

connected by four enhanced Coordinate attention (ECA) modules (Hou et al., 2021) to enhance feature representations. The

structure of the ECA module is shown in Figure 7.165

Then, four 1×1 convolutional blocks will be applied to the attention-refined features of the four residual blocks to unify their

output channels to 96, then they are concatenated together after resizing. Finally, the fused features will be input into two 3×3

convolutional layers to generate a coarse prediction map, which is 1/4 the size of the input image.

3.1.2 Point Head

The point head introduces the point rending strategy (Kirillov et al., 2020) to get fine-grained UGS results. Specifically, given170

the coarse UGS results from the backbone, the point head will firstly collect N sampling points. Then, the N points are mapped

to the coarse UGS results as well as the selected fine-grained features from the backbone (the output of Res-Block2 in this

9
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Figure 8. The structure of the discriminator.

paper) to extract the feature vector of each sampling point. Then, the point-wise features will be concatenated and input into a

simple multilayer perceptron (MLP) to obtain classification results of each point.

3.2 Discriminator175

In order to transfer the prior knowledge from UGSet to images from other regions, a discriminator is adopted to obtain a well-

adapt UGSNet for each city/area in an unsupervised way. As shown in Figure 8, the discriminator consists of five convolutional

layers with a kernel size of 4 and a stride of 2, each connected by a Leaky ReLU layer. The output channels of each convolu-

tional layers are 64, 128, 256, 512, and 1, respectively. Finally, a softmax layer is utilized to conduct binary classification based

on the output feature.180

3.3 Optimization

The training of the proposed deep learning framework can be divided into two steps: pre-training, and adversarial training. At

the beginning, the UGSNet will be fully trained on UGSet to get initial parameters for the generator. After that, the discriminator

will be adopted to help generalize the pre-trained UGSNet to target cities/areas through adversarial learning. Detail information

of the optimization process are described in the following.185

3.3.1 Pre-training

In the pre-training process, the UGSNet will learn characteristics of all kinds of UGS from UGSet. Let us suppose the coarse

result output by the backbone is X and the ground truth is Y . Then, the loss between Y and X is calculated by a dice loss,

which can be defined as follows:

LDice = 1− (2|X ∩Y |)/(|X|+ |Y |) (1)190

where |X∩Y | is the intersection between X and Y , whilst |X| and |Y | denote the number of elements of X and Y , respectively.
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The loss of the classification results of the N sampling points in the point head is measured by the cross-entropy loss, which

can be defined as

LCE =−
N∑

i

[xilogyi + (1−xi)log(1− yi)] (2)

wherexi and yi represent the results and ground truth of the i-th point among the N sampling ones, respectively.195

Finally, the UGSNet is optimized by a hybrid loss, which can be expressed by

Lugs = LDice + LCE (3)

3.3.2 Adversarial training

After pre-training, the UGSNet is employed as the generator in the deep learning framework and train with the discriminator to

obtain a model that can be used for the UGS extraction of a target city/area. Taking the image Is and ground truth Ys in UGSet,200

and the image It from the target city/area as input, the adversarial training process requires no additional data for supervision,

which can be summarized as follows:

(1) Taking the pre-trained UGSNet as the start training point of the generator, the Is and It are forward to the generator to

get their prediction result Ps and Pt;

(2) Input Ps and Pt into the discriminator in turn to distinguish the source of the inputs;205

(3) According to the judgement result, the discriminator will be optimized first, which can be denoted as

LD(Ps,Pt) =−[(1− y)log(D(Ps)(h,w,0)) + ylog(D(Pt)(h,w,1))] (4)

where y represents the source of the inputs, and y = 0 denotes an input from It, and y = 1 denotes an input from Is.

(4) Then, an adversarial loss Ladv is calculated to help promote the generator to produce more similar results to confuse the

discriminator. The Ladv is actually the loss when the discriminator misclassifies the source of Pt as Is, which can be210

expressed as

Ladv =−log(D(Pt)(h,w,1)) (5)

(5) Finally, the generator will be optimized through the following objective function:

LG = Lugs + Ladv (6)

3.4 Parameter settings215

During the pre-training process, the training set of the UGSet is used for parameter optimization, to which random crop, flip

and rotation are employed for data augmentation to avoid overfitting, while the verification set was used to monitor the training
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direction and save the model in time. Five common semantic segmentation models are selected for comparison to prove the

validity of UGSNet, including UNet (Ronneberger et al. 2015), SegNet (Badrinarayanan et al. 2017), UperNet (Xiao et al.

2018), BiSeNet (Yu et al. 2018) and PSPNet (Zhao et al. 2017). In addition, ablation study is also conducted to further verify220

the effectiveness of the ECA modules and the point head. All models are fully trained for 200 epochs based on Adam optimizer

with an initial learning rate of 0.0001, which begins to decline linearly in the last 100 epochs. A batch size of 8 sample pairs is

adopted. After training, all selected models were compared through their performance on the test set. The adversarial training

process lasts for 10000 epochs, in which the batch size is set to 2. Both the generator and the discriminator employ an initial

learning rate of 0.0001. All experiments are implemented in PyTorch environments and are conducted on the GeForce RTX225

2080ti to accelerate model training

3.5 Accuracy Evaluation

Five indices are involved in the evaluation, including precision (Pre), recall (Rec), F1-score, intersection-over-union (IoU), and

overall accuracy (OA). Given that TP, FP, TN and FN refer to true positives, false positives, true negatives, and false negatives,

respectively, these indices can be defined as follows230

Pre =
TP

TP + FP
(7)

Rec =
TP

TP + FN
(8)

F1 =
2precision · recall

precision+ recall
(9)

IoU =
TP

FP + TP + FN
(10)

OA =
TP + TN

FP + TP + FN + TN
(11)235

During the pre-training process, the Pre, Rec, F1 and IoU are utilized to measure the model performance on UGSet, which

are commonly used in semantic segmentation tasks. On the other and, the Pre, Rec, F1 and OA indices are employed to verify

the accuracy of the generated UGS maps (UGS-1m).

4 Results

To evaluate the reliability of the UGS results, four example areas are randomly collected in Guangzhou city, as shown in240

Figure 10-(e), so as to obtain their UGS ground truth as the reference maps by expert interpretation. Then, accuracy evaluation
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Figure 9. Results of accuracy evaluation on UGS-1m.

is conducted according to the reference maps and results in UGS-1m. These results are summarized in Figure 9. It is worth

noting that the OA of the UGS results can reach 87.4%, and the F1 can reach 81.14%. Moreover, the 83.7% Recall also

indicates a relatively low missed-detection rate of the UGS extraction results, which is significantly important in operational

scenarios. The quantitative results preliminarily demonstrate the validity of UGS-1m products.245

Visual comparisons between the reference map and the UGS-1m results are displayed in (a)-(d) of Figure 10. From the

overview image of (a)-(d), it can be seen that the results in UGS-1m are in good agreement with the reference map, which

is mainly reflected in the good restoration of UGS of various scales in each example image. The zoom-in area of each image

further shows the details of UGS-1m for extracting different kinds of UGS, including park, square, green buffer, as well as the

attached green space. Notably, the UGS-1m performs well in the extraction of green space attached to residential buildings,250

although they are complex and broken in morphology compared to other UGS types. The visualization further illustrates the

reliability of the UGS-1m. All results in the UGS-1m are demonstrated in Figure 11.

5 Discussions

5.1 Comparison with deep learning models

As Table 2 shows, the proposed method outperforms all state-of-the-art (SOTA) baselines with the highest F1 and IoU of255

77.30% and 62.99%, respectively. The scheme that achieves the closest performance, PSPNet, obtains an IoU of 60.96%. The

ablation study indicates that the integration of the ECA modules and point head can improve the Base model by 0.17% and
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Table 2. Performance of different semantic segmentation methods on UGSet.

Method Pre(%) Rec(%) F1(%) IoU(%)

SegNet 71.70 77.34 74.42 59.26

UNet 75.57 74.92 75.25 60.31

UperNet 74.81 76.11 75.45 60.58

BiSeNet 75.13 76.26 75.69 60.89

PSPNet 76.57 74.94 75.74 60.96

Base 76.52 76.22 76.37 61.77

Base+attention 76.87 76.13 76.49 61.94

Base+PointHead 74.99 78.89 76.89 62.46

UGSNet 75.40 79.29 77.30 62.99

0.69% on IoU, respectively, which proves their effectiveness. The IoU of UGSNet is 1.22% higher than that of the Base model,

indicating that their combination has a greater gain effect. Figure 12 further demonstrates the performance of different methods.

Especially, the UGSNet also does a best job in the mapping of many small scale UGS, as shown in the yellow boxes in Figure260

12.

5.2 Comparison with existing products

We compare the UGS-1m results with existing global land use products to verify the reliability of the results, including Glo-

beLand30 (Chen and Chen, 2018), GLC_FCS30 (Zhang et al., 2021) and Esri 2020 LC (© 2021 Esri). Due to different classi-

fication systems, these products need to be reclassified in two categories first. Specifically, forests, grasslands and shrublands265

are reclassified as UGS, while the other categories are reclassified as non-UGS. Examples from 6 different cities of different

latitudes, including Changchun, Urumqi, and Beijing, Chengdu, Wuhan and Guangzhou, are collected to give more compre-

hensive demonstrations on our UGS results. The visualization comparison among UGS-1m, GlobeLand30, GLC_FCS30 and

Esri 2020 LC is shown in Figure 13. Apparently, the three comparative products contain most large-scale UGS, among which

the GlobeLand30 performs best with most complete UGS prediction. However, many detailed UGS features are still missed270

due to the limitation on spatial resolution of source image. On the other hand, the UGS-1m provides UGS with relatively large

scale, as well as detailed UGS information such as attached green space. The results and comparisons fully demonstrate the

effectiveness and potential of the proposed deep learning framework for large-scale and fine-grained UGS mapping.

5.3 Limitations and future work

At present, the availability of high-resolution images is still severely limited by factors such as temporal resolution, image275

distortion and cloud occlusion. Therefore, the Google Earth images used to produce UGS-1m are very difficult to collect at

one time, so it is difficult to ensure the unity of phenology. In the proposed deep learning framework, we introduce domain

adaptation to deal with this problem to some extent. Comparison results had shown the effectiveness of UGS-1m, as well as the
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feasibility and potential of the proposed deep learning framework for large-scale, high-resolution mapping. Future works will

be dedicated to extract UGS information based on data with higher temporal resolution, such as SAR images and unmanned280

aerial vehicle (UAV) images.

6 Code and data availability

The UGS-1m product can be downloaded at https://doi.org/10.5281/zenodo.6155516 (Shi et al., 2022). They are named by

name of the 34 cities/areas.

The Dataset and Code for the deep learning framework will be available at https://github.com/liumency/UGS-1m.285

7 Conclusions

In this paper, we propose a novel deep learning (DL) framework for large-scale UGS mapping, and generate the fine-grained

UGS maps for 34 major cities/area in China (UGS-1m). The accuracy evaluation on the UGS-1m products indicates the relia-

bility and applicability. Comparative experiments conducted on UGSet among several SOTA semantic segmentation networks

show that UGSNet can achieve the best performance on UGS extraction. The ablation study on UGSNet also demonstrates the290

effectiveness of the ECA module and point head. Comparisons between UGS-1m and existing land use products have proved

the validity of the proposed DL framework for large-scale and fine-grained UGS mapping. The achievements provided in this

paper can support the scientific community for UGS understanding and characterization, and pave the way for the development

of robust and efficient methods able to tackle the current limits and needs of UGS analysis in technical literature.
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Figure 10. Visual comparisons of UGS results in UGS-1m: case study in Guangzhou City. (a)-(d) is four example areas collected from

Guangzhou (Images © Google Earth 2020), (e) denoted the geographical location of (a)-(d).
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Figure 11. UGS results of the 34 major cities/areas in China (UGS-1m).
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 12. Visualization comparisons of different methods on UGSet (Images were retrieved from GF-2 2019). (a) Image; (b) Label; (c)

SegNet; (d) UNet; (e) UperNet; (f) BiSeNet; (g) PSPNet; (h) Base; (i) Base+ECA; (j) Base+Point Head; (k) UGSNet.
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Figure 13. Visualization comparisons between UGS-1m, GlobeLand30 (Chen and Chen, 2018), GLC_FCS30 (Zhang et al., 2021) and Esri

2020 LC (© 2021 Esri) (Images © Google Earth 2020).
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